Deficiency of the Mitochondrial Electron Transport Chain in Muscle Does Not Cause Insulin Resistance
نویسندگان
چکیده
BACKGROUND It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD), used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance. CONCLUSIONS/SIGNIFICANCE The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC), and imbalance between the ETC and β-oxidation pathways, causes muscle insulin resistance.
منابع مشابه
Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran
Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...
متن کاملDeficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.
The current study addresses a novel hypothesis of subcellular distribution of mitochondrial dysfunction in skeletal muscle in type 2 diabetes. Vastus lateralis muscle was obtained by percutaneous biopsy from 11 volunteers with type 2 diabetes; 12 age-, sex-, and weight-matched obese sedentary nondiabetic volunteers; and 8 lean volunteers. Subsarcolemmal and intermyofibrillar mitochondrial fract...
متن کاملMitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content.
OBJECTIVE In obesity and type 2 diabetes, exercise combined with weight loss increases skeletal muscle mitochondrial capacity. It remains unclear whether mitochondrial capacity increases because of weight loss, improvements in insulin resistance, or physical training. In this study, we examined the effects of an intervention of weight loss induced by diet and compared these with those of a simi...
متن کاملEssential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function.
Cardiovascular disease is the leading cause of death in people with type 2 diabetes and is linked to insulin resistance even in the absence of diabetes. Here we show that mice with combined deficiency of the insulin receptor and insulin-like growth factor 1 (IGF-1) receptor in cardiac and skeletal muscle develop early-onset dilated cardiomyopathy and die from heart failure within the first mont...
متن کاملAltered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice.
We recently reported insulin resistance in adult offspring of obese C57BL/6J mice. We have now evaluated whether parameters of skeletal muscle structure and function may play a role in insulin resistance in this model of developmental programming. Obesity was induced in female mice by feeding a highly palatable sugar and fat-rich diet for 6 wk prior to pregnancy, and during pregnancy and lactat...
متن کامل